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Axioms of an Experimental System

John Harding1

Received September 28, 1998

In this paper a system of axioms is presented to define the notion of an experimental
system. The primary feature of these axioms is that they are based solely on the
mathematical notion of a direct product decomposition of a set. Properties of
experimental systems are then developed. This includes defining negation,
implication, conjunction, and disjunction on the set 4 of all binary experiments
of the system and showing that the resulting structure is a regular orthomodular
poset. The theory of observables of experimental systems is also developed.
Finally, the usual models of experiments from classical as well as quantum physics
are shown to satisfy the axioms of an experimental system, and a mechanism to
create new models of the axioms is given.

1. INTRODUCTION

In this paper an axiomatic theory of experimental systems is developed
based on the notion of direct product decompositions. As with many axiomatic

theories, ours grows from the desire to isolate a small number of essential

features of a well-studied situation. There are two benefits to such an

approachÐ one gains a clearer picture of the workings of the primary model,

and useful generalizations often present themselves. The familiar situation

abstracted by our axioms is that of experiments of a quantum mechanical
system.

In the standard approach to quantum mechanics, one associates to each

quantum system a Hilbert space *. An experiment of the system, which is

assumed to have finitely many mutually exclusive and exhaustive outcomes,

is taken to be a finite sequence P1, . . . , Pn of projection operators of *. The

exact requirements on this sequence is that the P i be pairwise orthogonal and
jointly span *. It is well known that any vector v P * can be expressed as
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v 5 P1v 1 . . . 1 Pnv, a fact often expressed in physical terms by saying

that v is a superposition of vectors corresponding to the various possible

outcomes the experiment. Using this fact, it is easy to see that each experiment
gives rise to a direct product decomposition * > *1 3 ? ? ? 3 *n. It is this

observation that lies at the heart of our axioms.

Given a bit of informality, the axioms defining an experimental system

are easily described. First, it is assumed that one has an abstract set of

experiments, and that each experiment is assigned a natural number represent-

ing its number of outcomes. It is further assumed that from any experiment
e, other experiments can be built by combining various outcomes of e. If an

experiment f can be built in this manner from an experiment e, one says that

e refines f, and a set of experiments is called compatible in the case that a

common experiment refines each. The first axiom asserts that a set S is

associated with a system and that each n-ary experiment corresponds to an

n-ary direct product decomposition S > S1 3 ? ? ? 3 Sn. The second axiom
states that if an experiment e refines an experiment f, then the decomposition

corresponding to e refines the decomposition corresponding to f. The final

axiom asserts that if the decompositions corresponding to a set K of experi-

ments is compatible, then the set K of experiments is compatible.

A heuristic comment may be worthwhile. The superposition principle
of quantum mechanics asserts that a vector v P * can be expressed as a

sum v 5 v1 1 ? ? ? 1 vn of vectors corresponding to different possible outcomes

of an experiment. In the axiomatic approach described above an analogous

situation exists. Each element s P S is expressed as an ordered n-tuple (s1,

. . . , sn) of elements corresponding to different possible outcomes of the

experiment. In a sense, the fundamental observation is that an additive struc-
ture is not needed to describe a process of superposition.

While simple, a good deal can be proved from these axioms. As in the

Hilbert space model, the set 4 of all binary experiments, or questions, plays

an essential role. A unary operation of negation can easily be defined on 4
by setting not e to be the question formed by interchanging the order of the

outcomes of e. Of more interest, a common refinement of compatible ques-
tions e, f can be used to construct questions e and f and e or f, and to define

a relation implies on 4. Using the above axioms and a careful analysis of

properties of direct product decompositions, one can show that (4, implies,
not) is a regular orthomodular poset with join and meet of compatible elements

being given by the operations and, or.
The Boolean subalgebras of the structure 4 are used to develop the

notion of observables of an experimental system. Here, too, decompositions

of the set S play a fundamental role. Using the axioms of an experimental

system, it is shown that the finite Boolean subalgebras of 4 with n atoms

correspond exactly to the direct product decompositions of S associated with
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n-ary experiments. The infinite Boolean subalgebras of 4 are also described

in terms of decompositions of S. The correct notion here is not that of an

infinite direct product, as one might first suspect, but rather of a continuously
varying or Boolean product decomposition of S.

In the case that probabilities can be assigned to experiments in a regular

fashion, these results on Boolean subalgebras can be put to use. One can

show that each element s P S induces a finitely additive state w s: 4 ® [0,

1], and these states can in turn be used to associate numerical values to the

expected value of an observable and to the probability of an observable
yielding a value in a given Borel set of the reals.

The paper is organized in the following fashion. Section 2 contains the

axioms defining an experimental system. Section 3 is devoted to logical

aspects of the questions of a system. Section 4 introduces the axioms for

experimental systems with probabilities. Section 5 pertains to observables.

Section 6 presents various models of the axioms. These include mathematical
models from classical physics, from the Hilbert space formulation of quantum

mechanics, as well as a general method to create a wide range of new

examples. Lengthy technical proofs have been removed from the main body

of the paper and included in two appendices.

Finally, it must be remarked that this is a mathematical paper in which
a mathematical notion of an experimental system is defined. No attempt is

made here to give a precise physical definition of an experiment, and such

is not required. Frequently, the names given to certain mathematical construc-

tions will be physically suggestive, but it is not claimed that a complete

physical interpretation has been given to the axioms introduced. It is not

clear whether this difficult task has even been accomplished for the Hilbert
space model of quantum mechanics from which these axioms are taken.

2. THE AXIOMS

While presenting formal mathematical definitions, it may be helpful to
carry on an informal discussion as motivation. Our first remark is that an

experiment e is to have finitely many mutually exclusive and exhaustive

outcomes which are numbered outcome one through outcome n. The number

of outcomes of an experiment e will be called the arity of the experiment.

In abstracting certain properties of the set of all experiments we arrive at the
following notion.

Definition 2.1. A leveled set consists of a nonempty set E, together with

a map from E into the natural numbers. The natural number associated with

an element e P E is called the arity of e.
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Before proceeding further, it may be helpful to have an example of an

experiment from the familiar quantum model. Consider the experiment which

sends a particle through a certain type of magnetic device. Depending on
whether the particle has spin 1 1, spin 0, or spin 2 1, the trajectory of the

particle is sent along one of three paths. Detectors are placed at suitable spots

along these three paths. If we agree to label the spin 1 1, 0, 2 1 outcomes

as outcomes one, two, and three respectively, this determines a ternary experi-

ment e. Of course, if one were to choose a different numbering system for

the outcomes, say spin 0, 2 1, 1 1 corresponding to outcomes one, two, and
three respectively, a closely related but different experiment would be

obtained. As a convenient notational device, this new experiment is referred

to as ({2}, {3}, {1})e.

A more interesting situation occurs when one considers experiments

that can be built from the experiment e by combining various outcomes of

e. Suppose the detectors placed on the spin 0 and spin 2 1 paths are removed,
a device to merge the spin 0 and spin 2 1 paths is inserted, and a detector

placed at a suitable spot on this new path. The result would have two possible

outcomes. By assigning outcome one to the spin 1 1 detector and outcome

two to the newly inserted detector, a new experiment is formed. As a notational

convenience, this new experiment will be denoted ({1}, {2, 3})e. Our next
task is to formalize some of the notation that will be required to abstract

these notions.

Definition 2.2. An ordered partition of a natural number n $ 1 is a finite

sequence s of pairwise disjoint subsets of {1, . . . , n} which cover {1, . . . ,

n}. The number of terms in the sequence is denoted | s |, and s (i) denotes
the ith term of the sequence.

Of course, if one begins with an experiment e that has a relatively large

number of outcomes, it is possible to create a new experiment s e by combining

some of the outcomes of e. But the process need not stop here. By combining

outcomes of this new experiment s e, one may produce yet another experiment,
say f ( s e). Clearly this final experiment is equivalent to one constructed

directly from e. With a bit of foresight into the types of situations which will

arise, the following extension is provided to our notation.

Definition 2.3. Let 2n denote the collection of all ordered partitions of

n, and 2 denote the collection of all ordered partitions of natural numbers.
Define a partial binary operation on 2 as follows: if s is an ordered partition

of n and f is an ordered partition of | s |, define f s to be the ordered partition

of n with ( f s )(i) 5 ø { s ( j ): j P f (i)} for each i # | f |. Finally, for n $ 1

define in to be the ordered partition ({1}, . . . , {n}).
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I am grateful to M. Gehrke for pointing out that ordered m-ary partitions

of n correpond to functions from the set {1, . . . , n} to the set {1, . . . , m},

an observation exploited in the proof of the following lemma.

Lemma 2.4. When defined, l ( f s ) 5 ( l f ) s .

Proof. For s an m-ary partition of n, consider f s : {1, . . . , n} ® {1,

. . . , m}, where f s (i) 5 j iff i P s ( j ). One easily checks f f + f s 5 f f s . n

The set 2 was introduced to describe a certain action on the set of
experiments. It is of obvious importance to describe key features of this action.

Definition 2.5. An action of 2 on a leveled set E associates to each n-

ary element e P E and each ordered partition s of n a | s |-ary element s e
of E such that ( f s )e 5 f ( s e) and ine 5 e.

Certain leveled sets acted on by 2 will be the basic objects of study. A few
suggestive terms presented in the following definition will make discussions a

bit easier.

Definition 2.6. Let E be a leveled set acted on by 2 and e, f be elements

of E. Then f is said to be built from e if there is s with s e defined and equal

to f. A subset K # E is called compatible if for each finite subset K 8 # K
there is a single member of E from which each member of K 8 can be built.

With the basic notions in hand, the task of relating direct product decom-

positions to experiments can begin. The first step is to give a precise definition

of the term.

Definition 2.7. An n-ary decomposition of a set S consists of a sequence
S1, . . . , Sn of sets and an isomorphism f : S ® S1 3 ? ? ? 3 Sn. This isomorphism

is often written S > f S1 3 ? ? ? 3 Sn. From any such decomposition one obtains

a sequence of maps f1, . . . , fn , with fi: S ® Si, such that f(s) 5 ( f1(s), . . . , fn(s)).

A few difficulties immediately present themselves. Consider, for exam-

ple, the case that S is a finite set with a prime number of elements p. In a
sense, there are two different ways to decompose S as a direct product of

two setsÐ as a p-element set times a one-element set, or as a one-element

set times a p-element set (the order of the factors is important!). However,

there are infinitely many different p-element sets, hence infinitely many

binary direct product decompositions of S. To capture the idea that it is the

method in which S is decomposed, not the actual sets used in the decomposi-
tion, the following definition is employed.

Definition 2.8. An equivalence relation is defined on the class of all

decompositions of a set S by setting S > f S1 3 ? ? ? 3 Sm equivalent to S > g

T1 3 ? ? ? 3 Tn if m 5 n and for each i # n there is an isomorphism hi: Si
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® Ti with hi + fi 5 gi. The notation [S > f S1 3 ? ? ? 3 Sn] is used for the

equivalence class of the given decomposition, and $(S) denotes the collection

of all equivalence classes of decompositions of S.

The set $(S) clearly forms a leveled set where the natural number

associated with an equivalence class of decompositions [S > S1 3 ? ? ? 3 Sn]

is n. The following result provides a first link between experiments and

decompositions. Its proof is not difficult, but rather lengthy, and is left to

the reader.

Lemma 2.9. An action of 2 may be defined on the leveled set $(S) by
setting s [S > f S1 3 ? ? ? 3 Sn] to be the equivalence class of the obvious

decomposition S > T1 3 ? ? ? 3 T| s | where Ti 5 P {Sj: j P s (i)}.

A few simple examples may help to untangle the notation. Given a

decomposition S > S1 3 ? ? ? 3 S4 and an ordered partition s 5 ({2}, {1, 4},

{3}), it follows that

s [S > S1 3 S2 3 S3 3 S4] 5 [S > S2 3 (S1 3 S4) 3 S3]

It is perhaps worthwhile to point out that the empty set may occur in an

ordered partition s of n. This poses no difficulties if one remembers that the

union of the empty family of sets is the empty set and that the product of

the empty family of sets is a one-element set. For instance if x 5 (0¤, {1 3},

{2, 4}), then

x [S > S1 3 S2 3 S3 3 S4] 5 [S > { + } 3 (S1 3 S3) 3 (S2 3 S4)]

Here { + } is used to denote any one-element set. Informally, if e is an experi-
ment with four outcomes, and x 5 (0¤, {1, 3}, {2, 4}), one interprets x e as

an experiment with three outcomesÐ the second outcome of x e is built by

combining the first and third outcomes of e, the third outcome of x e is built

by combining the second and fourth outcomes of e, and the first outcome of

x e never happens. The preliminaries set, it is now possible to define the

notion of an experimental system.

Definition 2.10. An experimental system consists of a leveled set E
which is acted on by 2, a set S, and an embedding D:E ® $(S) which
satisfies the three axioms below. For convenience, elements of E are

called experiments.

Axiom 1. If e is an n-ary experiment, then De is n-ary.

Axiom 2. D( s e) 5 s (De) for each n-ary experiment e and each s P 2n.

Axiom 3. For a set K of binary experiments, D[K ] compatible implies

K compatible.
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The effects of weakening Axiom 3 to apply only to sets of two binary

experiments, and strengthening Axiom 3 to apply to arbitrary sets of experi-

ments, will also be studied. Roughly, the weakening has little overall effect,
and the apparently stronger version is already a consequence of the axioms

presented above.

3. THE LOGICAL STRUCTURE OF QUESTIONS

Let 4 be the set of all binary experiments of an experimental system. Such
binary experiments are often called Yes ± No questions, or simply questions.

Outcome one of a question is referred to as the Yes outcome, and outcome

two as the No outcome. The aim is to define questions True and False, to

define the negation of a question, and for compatible pairs of questions, to

define their conjunction, disjunction, and the relationship of implication.

Lemma 3.1. There are unique questions True, False with D(True) 5
[S > S 3 { + }] and D(False) 5 [S > { + } 3 S ]. Here { + } is a one-element set.

Proof. Unicity follows as D is an embedding. For existence, the collection

of experiments of an experimental system is by definition nonempty. If e is an

n-ary question, set True 5 ({1, . . . , n}, 0¤)e and False 5 (0¤, {1, . . . , n})e. n

A proof of the following result is found in appendix A.

Lemma 3.2. If e, f are compatible questions, then there is a unique

experiment g with four outcomes such that e 5 ({1, 2}, {3, 4})g and f 5
({1, 3}, {2, 4})g. The experiment g is called the standard refinement of the

ordered pair (e, f ).

Lemma 3.3. Let g be an n-ary experiment and s , f be ordered partitions

of n with | s | 5 | f | 5 2. Then the standard refinement of the ordered pair

of questions ( s g, f g) is m g, where m 5 ( s (1) ù f (1), s (1) ù f (2), s (2)

ù f (1), s (2) ù f (2)).

Proof. As | f | 5 2, the sets f (1) and f (2) form a partition of the set
{1, . . . , n}. Therefore m (1) ø m (2) 5 s (1). Using this and other similar

equations, it follows that ({1, 2}, {3, 4}) m 5 s and ({1, 3}, {2, 4}) m 5 f . n

The above result on the existence and uniqueness of standard refinements

allow for the definition of the logical operations desired.

Definition 3.4. Let e and f be compatible questions, and g be the standard
refinement of (e, f ). Then define the following questions:

(1) (e and f ) 5 ({1},{2,3,4})g.

(2) (e or f ) 5 ({1,2,3}, {4})g.

(3) (not e) 5 ({2}, {1})e.
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A relation implies is then defined on 4 by setting e implies f if e, f are

compatible and ((not e) or f ) 5 True.

A comment on the interpretation of these operations is in order. The

compatibility of questions e, f means that there is an experiment g with four

outcomes such that the Yes outcome of e corresponds to the combination of the
first two outcomes of g, the No outcome of e corresponds to the combination of

the last two outcomes of g, the Yes outcome of f corresponds to the combination

of the first and third outcomes of g, and the No outcome of f corresponds to

the combination of the second and fourth outcomes of g. The experiment (e
and f ) described above does not involve actually conducting either experiment

e or experiment f. Instead, one starts with the experiment g, leaves the first
outcome of g alone, and combines the final three outcomes of g. A Yes
outcome to (e and f ) then corresponds to the first outcome of g and a No
outcome to (e and f ) corresponds to the combination of the final three

outcomes of g.

One may or may not believe that this process gives a reasonable definition
of the conjunction of two experiments. However, it certainly does give an

operation on the collection of all binary experiments of a system. This

operation, and the corresponding operation for disjunction, can then be studied

under whatever names one should choose. It is the task here to show the

algebraic character of these operations has much in common with that of

their namesakes from classical logic. A first step toward this goal is provided
by the following.

Proposition 3.5. For an experiment g, any two questions of B 5 { s g:
| s | 5 2} are compatible. Moreover, B is closed under the operations and,

or, not, True, False, and forms a Boolean algebra under these operations

with the partial ordering given by implies.

Proof. By definition, any two questions in B are compatible, and it
follows from Lemma 3.3 that B is closed under the logical operations. To

show B is Boolean, it is enough to show the map w from the power set of

{1, . . . , n} onto B defined by w (A) 5 (A, Ac)g is a homomorphi sm. Note that

not w (A) 5 not((A, Ac)g) 5 (Ac, A)g 5 w (Ac)

Also, using the description of standard refinements given in Lemma 3.3,

we have

w (A) and w (C ) 5 (A ù C, Ac ø Cc)g 5 w (A ù C )

Clearly a similar result holds for conjunctions as well, and w (0¤) 5 False.

Thus w is a homomorphism. n
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Therefore, conjunction, disjunction, negation, and implication behave

classically when restricted to certain small subsets of the set 4 of questions.

Next, the behavior of these notions on 4 as a whole is examined. From the
outset, the possibility that certain experiments are not compatible has been

acknowledged. Thus, there is no reason to expect, or desire, notions of

conjunction and disjunction valid for all pairs of questions. Still, there is

much to ask of the system. For example, one would like implication to be

transitive, and if all of the operations in the following expression are known

to be defined, one would like to conclude

e and ( f or g) 5 (e and f ) or (e and g) (3.1)

This and much more is true of the questions of any experimental system.

Before demonstrating this, it is useful to introduce some terminology.

Definition 3.6. A subset Y of an orthomodular poset X is a subalgebra

of X if Y is closed under orthocomplementation and contains the least upper

bound x % y of any two orthogonal elements belonging to Y. Clearly a

subalgebra of an orthomodular poset is itself an orthomodular poset. If a
subalgebra happens to be a Boolean algebra, it is called a Boolean subalgebra.

A proof of the following well known result can be found in ref. 4.

Lemma 3.7. If B is a Boolean subalgebra of an orthomodular poset X,

then any two elements of B have a least upper bound in X which agrees with

their least upper bound in B. Similar remarks hold for greatest lower bounds.

Much of the work in establishing the following theorem is done in refs.
3 and 4, and the remaining details are provided in Appendix A.

Theorem 3.8. (1) (4, implies, not, False, True) is an orthomodular poset.

(2) A set K of questions is contained in a Boolean subalgebra of 4 iff K is

compatible, which occurs iff any two questions in K are compatible. (3) The

operations in any Boolean subalgebra of 4 are given by and, or, not, False,

True. (4) If B is a finite Boolean subalgebra of 4 with n atoms, then there
exists an n-ary experiment g such that B 5 { s g: | s | 5 2}.

This theorem is much more than sufficient to provide condition (3.1)

above. Indeed, for all the terms in (3.1) to be defined, it is necessary that

any two of e, f, g are compatible. Then all three questions are compatible!

and are elements of a Boolean subalgebra B of 4. As the operations in any
Boolean subalgebra of 4 are given by and, or, not, condition (3.1) follows

immediately. The following results clarify the consequences of altering the

third axiom of an experimental system. Their proofs are found in Appendix A.

Proposition 3.9. Let 4 be the questions of a system which satisfies

Axioms 1 and 2, and a weakened version of Axiom 3 required to hold only
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for sets K consisting of two binary experiments. Then (1) (4, implies, not,
False, True) is an orthomodular poset. (2) A set K of questions is contained

in a Boolean subalgebra of 4 iff any two questions in K are compatible. (3)
The operations in any Boolean subalgebra of 4 are given by and, or, not,
False, True.

Proposition 3.10. There is a system which satisfies Axioms 1 and 2,

and a weakened version of Axiom 3 required to hold only for sets K consisting

of two binary experiments, but does not satisfy Axiom 3.

Proposition 3.11. For an experimental system, Axiom 3 holds for any

set K of experiments, binary or otherwise.

4. PROBABILITIES

In this section additional features are incorporated into the notion of
an experimental system to allow numerical values to be associated with

experiments in a regular fashion.

Definition 4.1. A map p: S ® [0, 1]n is called an n-ary probability map

on S if ( n
1 pi (s) is either 0 or 1 for each s P S. 3(S) denotes the collection

of all probability maps on S.

3(S) naturally forms a leveled set with the natural number associated

to an element p: S ® [0, 1]n being n. The following result is easy to verify

and its proof left to the reader.

Lemma 4.2. An action of 2 on 3(S) may be defined by setting s p to

be the | s |-ary probability map with ( s p)i (s) 5 ( { pj (s): j P s (i)}.

A simple example may help ease the notation. A probability map p: S ®
[0, 1]4 is most conveniently written using its component maps as ( p1, . . . ,

p4). This means that p(s) is the element ( p1(s), . . . , p4(s)) of [0, 1]4 for each

s in S. For the ordered partition s 5 ({2}, {1, 4}, {3}), one has s p 5 ( p2, p1

1 p4, p3), where the notation p1 1 p4 denotes the usual sum of real-valued

functions. The preliminaries aside, the required notion of an experimental
system with probabilities is given.

Definition 4.3. An experimental system with probabilities consists of an

experimental system D: E ® $(S) together with a map P: E ® 3(S) which

satisfies the following axioms:

Axiom 4. If e is an n-ary experiment, then Pe is an n-ary probability map.

Axiom 5. P( s e) 5 s (Pe) for each n-ary experiment e and each s P 2n.
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Note that D must be an embedding, but P need not. Often, elements of

S are called pure states, or simply states, and (Pe)i (s) is called the probability

of obtaining the ith outcome of experiment e, given the system is in state s.

Lemma 4.4. If e is an n-ary experiment and s is a state, then

( n
1 (Pe)i (s) 5 0 if and only if P(True)1(s) 5 0.

Proof. Let s 5 ({1, . . . , n}, 0¤). Then D( s e) 5 s (De) 5 [S > S 3
{ + }], so s e 5 True. But ( n

1 (Pe)i (s) 5 ( s (Pe))1(s) 5 (P( s e))1(s) 5
P(True)1(s). n

States s P S for which P(True)1(s) 5 0 are called null states. From the

above, a state s is a null state if and only if there is zero probability of

obtaining any outcome of any experiment when the system is in state s.

5. OBSERVABLES

Informally, terms such as position and momentum are abstract notions
used to discuss certain families of compatible experiments. These are custom-

arily called observable quantities, and the particular manner in which numeri-

cal values are associated with an observable quantity is called its scaling.

Here, notions of observable quantities and scalings are defined for experimen-

tal systems. Throughout, R denotes the real numbers, and [ 2 ` , ` ] the

extended reals.

Definition 5.1. An observable quantity is a Boolean subalgebra B of the

questions 4 of the system.

Recall that for any Boolean algebra B, there is a compact Hausdorff

space Z which has a basis of sets which are both open and closed (clopen)

such that B is isomorphic to the collection of all clopen subsets of Z. This

space Z is called the Stone space of B. Elements of Z are maximal filters of

B, and the clopen subsets of Z are exactly the ones of the form c* 5 {F P
Z: c P F }, where c P B. In addition to the topology on Z, there is a s -
algebra of subsets of Z generated by the clopen sets. Measures and measurable

functions on Z are understood to be with respect to this s -algebra.

Definition 5.2. A scaling of an observable quantity is a real random

variable on the Stone space of B, or in other words, a measurable map from

the Stone space of B to the extended reals.

To assign probabilities to the outcomes of an experiment, the notion of

an experimental system with probabilities was introduced. It is this same

notion that is used to assign probabilities to measurements of an observable

quantity. For the remainder, assume the experimental system has probabilities
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in the sense of the previous section, and for each state s define c s: 4 ® [0,

1] by setting c s(e) 5 (Pe)1(s).

Lemma 5.3. For an observable quantity B and a state s which is not
null, the map c s: B ® [0, l] is a finitely additive measure.

Proof. By Theorem 3.8 the operations on any Boolean subalgebra of 4
are given by and, or, not, False, True. Using the definition of null state, it

follows that c s(True) 5 1. It remains only to show additivity for disjoint

elements. Suppose e, f P B with (e and f ) 5 False, and let g be the standard
refinement of the ordered pair (e, f ) given by Lemma 3.2. As e 5 ({1, 2},

{3, 4})g, it follows that (Pe)1 5 (Pg)1 1 (Pg)2, and similarly as f 5 ({1, 3},

{2, 4})g, it follows that (Pf )1 5 (Pg)1 1 (Pg)3. From the definition of and
given in Definition 3.4, it follows that False 5 (e and f ) 5 ({1}, {2, 3, 4})g,

hence 0 5 P(False)1 5 (Pg)1. From the definition of or, it follows that P(e
or f )1 5 P(({1, 2, 3}, {4})g)1 5 (Pg)1 1 (Pg)2 1 (Pg)3 5 (Pe)1 1 (Pf )1.
Therefore c s(e or f ) 5 c s(e) 1 c s( f ). n

The above shows that for each s P S which is not null, the map c s: Q
® [0, 1} is a finitely additive state in the sense usually used when studying

orthomodular posets.(8)

Proposition 5.4 Let B be an observable quantity. Then for each state s
which is not null there is a unique probability measure m s on the Stone space

of B with m s(e*) 5 c s(e) for each e P B.

Proof. Consider the map c *s from the clopen sets of the Stone space of

B to [0, 1] defined by c *s (e*) 5 c s(e). This map is finitely additive, and as

Z is compact, it follows that c *s is a probability measure on the clopen subsets
of Z in the sense of (ref 6, p. 10). So c *s has a unique extension to a probability

measure m s on the s -algebra of subsets of Z generated by the clopen subsets

of Z (ref. 6, p. 23). n

With the preliminaries aside, the key notions can now be defined.

Definition 5.5. Let f be a scaling of an observable quantity B and s be

a state that is not null. The value m s( f 2 1U ) is called the probability that a

measurement of B will yield a value in the Borel set U, under the scaling f,
given the system is in state s. The expected value of the observable quantity

B under the scaling f when the system is in state s is defined simply to be

the expected value * Z f d m s of the scaling f with respect to the measure m s.
Note also that a calculus of scalings is easily developed. For any measurable

map w on the extended reals, and any scaling f, define w ( f ) to be the scaling

w + f.

A simple example follows.
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Example 5.6. Consider the observable quantity B 5 {True, False, e, not
e}. Note that B has precisely two maximal filters, e - and not e - , hence the

Stone space Z is a two-element discrete space {e - , not e - }. For a state s
which is not null, the measure m s is given by m s({e - }) 5 c s(e) 5 (Pe)1(s),
the probability of obtaining a Yes outcome to e when the system is in state

s, and m s({not e - }) is the probability of obtaining a No outcome to e when

the system is in state s. The scaling f (e - ) 5 1.2 and f (not e - ) 5 1.7 associates

the numerical value 1.2 to a Yes outcome of e and 1.7 to a No outcome of

e. The expected value when the system is in state s is * Z fd m s 5 1.2(Pe)1(s)
1 1.7(Pe)2(s).

While scalings of observable quantities are plentiful, one particular

method of constructing scalings is likely to be of interest, especially to

those familiar with the treatment of observables given in quantum logic. The

situation is described by the following result.

Proposition 5.7. Let w be a Boolean algebra homomorphism from the

Borel subsets of the reals to an observable quantity B. Then the map f from

the Stone space of B to the extended reals defined by f (F ) 5 inf{ l P R:

w ( 2 ` , l ] P F } is both continuous and measurable.

Proof. It suffices to show that the inverse image under f of a basic open
subset of the extended reals is a countable union of clopen sets. Let Q+ be

the set of positive rational numbers. Then

f 2 1 (a, ` ] 5 {F: w ( 2 ` , a 1 e ] ¸ F for some e P Q+}

hence f 2 1(a, ` ] 5 ø Q
1 w (a 1 e , ` )*. Similarly, f 2 1[ 2 ` , b) 5

ø Q
1 w ( 2 ` , b 2 e )*. Thus f is both continuous and measurable. n

To conclude this section, one important task remainsÐ to show the

fundamental connection between decompositions of S and observables. Recall

that each n-ary experiment e gives rise to an n-ary direct product decomposi-

tion S > S1 3 ? ? ? 3 Sn of the state space S. One may obviously consider the

set {1, . . . , n} to be an indexing set of the factors used in this decomposition.
For each state s, one then obtains a weighting ws of the points {1, . . . , n}

where the weight associated with the point i is P(e)i (s). A scaling then assigns

to each outcome i a numerical value f (i).
Informally, one might think of an observable as a type of limiting process

of a system of ever finer finitary experiments. What then might correspond

to the limit of the associated system of ever finer finitary direct product
decompositions of S? To answer this, one requires the notion of a continuously

varying, or Boolean product, decomposition of S. Roughly, this is a representa-

tion of S as a subalgebra of a direct product P Z Sz where the set used to

index the factors is the Stone space Z. The situation then parallels the finitary
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case. An element of Z corresponds not to an outcome of an experiment, but

to the limit of a system of ever finer outcomes. For a state s, one again

obtains a weighting of the points of the indexing set Z. However, this weighting

is no longer a simple point charge, but a measure m s. Finally, a scaling f

assigns to each idealized outcome of Z a numerical value.

The heuristics aside, the exact nature of a Boolean product decomposition

must be made precise, and the correspondence between these Boolean product

decompositions and observable quantities described. The key to this is the

notion of a sheaf.

Definition 5.8. A sheaf is an indexed family (Tx)x P X of pairwise disjoint

sets Tx , called stalks, together with topologies on T 5 ø X Tx and on the

indexing set X, such that each t P T has a neighborhood on which the natural

projection p : T ® X restricts to a homeomorphism. Given an open set U #
X, define G (U ) to be the set of all continuous maps f : U ® T with f(x) P
Tx for each x P U. The elements of G (U ) are called sections over U.

By definition, P X Tx 5 { f : X ® T: f (x) P Tx} for any indexed family

of sets. So for a sheaf (Tx)X , the set G (X ) is clearly a subset of the direct

product consisting of those choice functions which are continuously varying.

In the special case that the base space Z of a sheaf (Tz)Z is the Stone space

of a Boolean algebra, the sheaf is called a Boolean sheaf, and the set G (Z )

is called the Boolean product of (Tz)Z. See ref. 1 for access to the literature

on Boolean products and sheaves. The following result has a long history.

Modulo the discussion of 4 provided by Theorem 3.8, it can reasonably be

attributed to Pierce.

Theorem 5.9. Let B be an observable quantity and Z be its Stone space.

Then there is a sheaf (Tz)Z such that De 5 [S > G (e*) 3 G (not e*)] for each

e P B.

As a final remark, it should be noted that many modifications of the

notion of an observable quantity and scaling might be made. For example,

it would be most reasonable to require f 2 1[{ 6 ` }] be of m s measure zero for

each state s. Also, one might consider the possibility of requiring a scaling

to be not only measurable, but continuous as well, or demanding that an

observable quantity be a complete Boolean algebra. When one specializes

to the Hilbert space model of quantum mechanics, all these stronger conditions

are valid for the self-adjoint operators used to model observables. The aim

here is to find the bare minimum one might require of an experimental

system; one can specialize from there.
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6. MODELS

In this section, various models of the axioms are presented. We begin

with the Hilbert space model of quantum mechanics on which our axioms
are based.

6.1. The Hilbert Space Model

Definition 6.1.1. Let * be a Hilbert space. Define E be the collection

of all sequences P1, . . . , Pn of projection operators whose ranges are pairwise
orthogonal subspaces which together span *, and define an action of 2 on

E by setting the ith element of the sequence s (P1, . . . , Pn) to be ( {P j: j P s (i)}.

Given an experiment e 5 (P1, . . . , Pn), each vector v is uniquely

determined by the sequence (P1v, . . . , Pnv). It follows that * can be decom-

posed as the product P1(*) 3 ? ? ? 3 Pn(*) of the ranges of these projection
operators. Further, as these ranges are pairwise orthogonal, |v|2 5 |P1v|2 1
? ? ? 1 |Pnv|2. These facts allow the following definitions.

Definition 6.1.2. For e 5 (P1, . . . , Pn), define De to be the equivalence

class of the decomposition * > P1(*) 3 ? ? ? 3 Pn(*). Further, let Pe: * ®
[0, 1]n be the n-ary probability map whose ith component is given by (Pe)i (v)
5 |Pi v|2/|v|2 for v Þ 0 and (Pe)i (v) 5 0 for v 5 0.

The proof of the following result is found in Appendix B.

Proposition 6.1.3. The maps D: E ® $(*) and P: E ® 3(*) form an

experimental system with probabilities. Further, (P, P ’ ) V P is an isomor-
phism between the orthomodular poset 4 of questions of the system and

Proj (*).

This shows that an experimental system with probabilities can be built

from a Hilbert space. Moreover, the treatment of experiments and their

probabilities in the usual Hilbert space model of quantum mechanics agrees
exactly with the treatment given here. However, there is a crucial detail

remaining. The treatment of observables given in the Hilbert space model

of quantum mechanics appears very different from the notion of an observable

of an experimental system. Roughly speaking, observables in the Hilbert

space model correspond to self-adjoint operators on the Hilbert space *. Our

next task is to reconcile these two approaches. We begin by briefly describing
how observables are treated in the usual Hilbert space model (see ref. 7 for

a complete account).

Definition 6.1.4. A spectral measure is a map E: @ ® Proj (*) from

the Borel sets @ of the reals R to the projection operators of a Hilbert space
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with (1) E(R) 5 1 and (2) E( ø `
1 Sn) 5 ( `

1 E(Sn) for any sequence S1, S2, . . .

of pairwise disjoint sets.

The key point is that to any self-adjoint operator A is associated a unique
spectral measure E having certain properties (ref. 7, Theorems 5.6 and 6.3).

We shall refer to this as the spectral measure associated with A. The following

proposition is a special case of a more general result (ref. 7, Theorem 5.4).

Proposition 6.1.5. If E: @ ® Proj(*) is a spectral measure, then for

any nonzero v P * the map n v: @ ® [0, 1] defined using the inner product
by setting n v(Y ) 5 (v, E(Y )v)/|v|2 is a probability measure on the Borel sets @.

With these facts about Hilbert spaces in hand, the treatment of observ-

ables in the usual Hilbert space model of quantum mechanics can be described.

In this model, observables are associated with self-adjoint operators of the

Hilbert space *. Suppose A is the self-adjoint operator associated with a
given observable and E is the spectral measure associated with A. Then for

any vector (state) v P * and any Borel set Y P @, the probability that a

measurement of the observable will yield a value in the set Y, given the

system is in state v, is taken to be n v(Y ) (ref. 7, p. 260). Further, the expected

value of this observable when the system is in state v is given by * R x d n v

(ref. 7, p. 263). It remains to connect this approach to observables with our
own. In the remainder of this discussion, the following assumption is

understood.

Assumption. A is the self-adjoint operator associated with a given observ-

able, and E: @ ® Proj (*) is the spectral measure associated with A.

Note that the spectral measure E is an ortholattice homomorphism (ref.
7, p. 232), so the image of E is a Boolean subalgebra B of Proj(*). As

Proj(*) is isomorphic to the questions 4 of the experimental system built

from *, there is a Boolean subalgebra B of 4 corresponding to the image

of E. Then B is an observable quantity of the system. Let Z be the Stone

space of B and define an extended real-valued map on Z by setting

f(F ) 5 inf{ l P R: E( 2 ` , l ] P F } (6.1)

Then by Proposition 5.7 the map f is measurable (with respect to the s -

algebra of subsets or Z generated by the clopen sets). In other words, f is a

scaling of the observable quantity B. To complete the connection between

the observable A and the observable quantity B, with scaling f, requires two
technical results whose proofs are found in Appendix B (see also ref. 5,

Chapter 5).

Lemma 6.1.6. For any state v and Borel set Y of the reals, n v(Y ) 5
m v( f 2 1 Y ).



Axioms of an Experimental System 1659

Lemma 6.1.7. For any state v, * R x d n v 5 * Z f d m v .

In Definition 5.5, m v( f 2 1Y ) is called the probability that a measurement

of the observable quantity B with scaling f will yield a value in the Borel

set Y, given the system is in state v. But by Lemma 6.1.6, this is exactly the

value customarily associated with the probability of the observable A yielding

a result in Y, given the system is in state v. Similarly, Lemma 6.1.7 shows
that the notion of expected value described in Definition 5.5 agrees with that

used in the usual Hilbert space model of quantum mechanics.

6.2. The Classical Model

In the classical model, propositions of the system correspond to certain

subsets of the set T of states of the system. It is not assumed that each subset

of T gives a proposition, but it is assumed that the propositions form a

Boolean subalgebra B of the power set of T with intersection, union, and

complementation giving the conjunction, disjunction, and negation of proposi-

tions. Given a state t P T and a proposition A # T, the probability of getting
a Yes answer to proposition A when the system is in state t is either 0 or 1,

depending on whether or not t belongs to the set A. Given such a classical

system with state space T and propositions B, the aim is to produce an

equivalent experimental system with probabilities.

Definition 6.2.1. Let E be the collection of all sequences T1, . . . , Tn of

pairwise disjoint members of B which cover T. Define an action of 2 on E
by setting the ith term of the sequence s (T1, . . . , Tn) to be ø {Tj: j P s (i)}.

The simple proof that E is a leveled set acted on by 2 is left to the reader.

Definition 6.2.2. Set S 5 2T, the collection of all maps from T into the

two-element set 2 5 {0, 1}. For an experiment e 5 (T1, . . . , Tn), define De
to be the equivalence class of the decomposition S > 2T1 3 . . . 3 2Tn. Fur-

ther, let Pe: S ® {0, 1}n be the n-ary probability map whose ith component

is defined by setting (Pe)i ( w ) 5 1 if the support of w is a singleton belonging

to Ti , and 0 otherwise.

Proposition 6.2.3. The maps D: E ® $(S) and P: E ® 3(S) form an

experimental system with probabilities. Further, (A, Ac) V A is an isomor-

phism between the questions of the system and the Boolean algebra B, and

the set T 8 of states of the system which are not null is isomorphic to T.

Proof. It is easy enough to see that the map D is an embedding, and

clearly D satisfies Axiom 1. Axiom 2 follows as 2T1 ø T2 is canonically isomor-

phic to 2T1 3 2T2. For Axiom 3, suppose K is a finite set (Ti , T c
i ), i 5 1, . . . ,

n, of questions. Then any sequencing of the atoms of the Boolean subalgebra
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of B generated by {Ti: i # n} yields an experiment from which each member

of K can be built. Therefore Axiom 3 is satisfied, as every set of questions

is compatible! That (A, Ac) V A is an isomorphism follows directly from
the definition of and, or, not.

That Pe is a probability map is easy to verify, and one notes that the

states w : T ® 2 which are not null are exactly the characteristic functions

of singletons from T. Axiom 4 is obvious, and Axiom 5 follows easily from

this description of null states. n

Informally, the notion of an experimental system created here is based

on the superposition principle. To construct an experimental system that

behaves classically, one must be rid of these superposed states. This is exactly

what has been done by making them null states.

6.3. Other Models of Experimental Systems

Proposition 6.3.1. For any set S, the identical embedding from $(S) to

itself is an experimental system.

No proof is needed for this result, as it follows directly from the axioms.

Note that for an experimental system D: E ® $(S), the map D is an isomor-
phism between E and its range. Therefore every experimental system is

equivalent to a subsystem of an experimental system $(S). Roughly, the

systems $(S) play a role analogous to that of permutation groups in group

theory. The experimental systems presented below will all literally be subsys-

tems of $(S).

Definition 6.3.2. An algebraic structure consists of a set S together with
a family of operations on S. A decomposition S > S1 3 . . . 3 Sn is called

a structural decomposition if each of the factors can be equipped with an

algebraic structure making the structure S isomorphic to the product. Define

Exp(S) to be the set of all equivalence classes of structural decompositions

of S.

Note that if there exist algebraic structures on the factors Si of a decompo-

sition S > S1 3 . . . 3 Sn , then they are uniquely determined, as the projections

must be homomorphisms.

Proposition 6.3.3. For an algebraic structure S, the identical embedding

of Exp(S) into $(S) is an experimental system.

Proof. Obviously the identical embedding is an embedding which satis-

fies Axioms 1 and 2. Before verifying Axiom 3, recall a result from ref. 4,

Theorem 5.8. There it is shown that that the set of binary structural decomposi-

tions form a subalgebra 48 of the questions 4 of the system $(S), and,
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moreover, that the Boolean subalgebras of 48 are exactly the Boolean subalge-

bras of 4 which are contained in 48.
To verify Axiom 3 it is enough to assume K is a finite set of questions

with K compatible in $(S ). It then follows from the above remarks and

Theorem 3.8 that K is contained in a finite Boolean subalgebra B of 48 and

that there is some n-ary decomposition d with B 5 { s d: | s | 5 2}. Suppose

d 5 [S > S1 3 . . . 3 Sn]. As each decomposition [S > S1 3 P {Sj: j Þ i}]

is in B, it is a structural decomposition. So the kernels of the projections are

congruences, and this yields that S > S1 3 . . . Sn is a structural
decomposition. n

Definition 6.3.4. A relational structure consists of a set S together with

a nonempty binary relation on S. A decomposition S > S1 3 . . . 3 Sn is

called a structural decomposition if the factors can be equipped with relations

making the structure S isomorphic to the product. Define Exp(S ) to be the
set of all equivalence classes of structural decompositions.

Again, if there are relations on the factors of a decomposition S > S1 3
. . . 3 Sn making this a structural decomposition, then it is easy to see they

are uniquely determined.

Proposition 6.3.5. For an relational structure S, the identical embedding
of Exp(S ) into $(S ) is an experimental system.

The proof of this result is substantially the same as the previous one,

and again the crucial details are provided by ref. 4, Theorem 5.8. It is,

however, a pleasant exercise to show for relational structures that each [S >
S1 3 P {Sj: j Þ i}] being a structural decomposition implies [S > S1 3 . . .
3 Sn] is a structural decomposition.

Definition 6.3.6. A decomposition S > S1 3 . . . 3 Sn of a topological

space S is called a structural decomposition if the factors can be equipped

with topologies making the structure S isomorphic to the product. Define

Exp(S ) to be the set of all equivalence classes of structural decompositions.

As the projection operators associated with a product of topological

spaces are both open and continuous, if there exist topologies on the factors

of a decomposition S > S1 3 . . . 3 Sn making this a structural decomposition,

then these topologies are uniquely determined.

Proposition 6.3.7. For a topological structure S, the identical embedding
of Exp(S ) into $(S ) is an experimental system.

Again the proof follows the above pattern, using ref. 4, Theorem 5.8.

It is another nice exercise to show each [S > Si 3 P {Sj: j Þ i}] being a

structural decomposition of a topological space implies [S > S1 3 . . . 3 Sn]
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is a structural decomposition. The above results can also be combined in

many ways. Rather than introduce further notation, a generic example is

presented below.

Definition 6.3.8. A partially ordered topological group consists of a set

S equipped with a group structure, a partial ordering, and a topology such

that the group operations are continuous and x # y implies axb # ayb for

all a, b, x, y P S. A decomposition S > S1 3 . . . 3 Sn is said to be a

structural decomposition if the factors Si can be equipped with partially
ordered topological group structures making the structure S isomorphic to

the product. Define Exp(S ) to be the set of all equivalence classes of struc-

tural decompositions.

Again, the structures on the factors realizing a structural decomposition

are uniquely determined. The proof of the following result mirrors those
above, using ref. 4, Theorem 5.13.

Proposition 6.3.9. For a partially ordered topological group S, the identi-

cal embedding of Exp(S ) into $(S ) is an experimental system.

As a final comment, it is also shown in ref. 4 that for any algebraic or

relational structure S, the observable quantities of the experimental systems
Exp(S ) are in complete correspondence with the Boolean sheaf representations

of the structure S. See ref. 4, Propositions 6.5 and 6.7, for further details.

No corresponding result is known for topological structures.

6.4. Other Models with Probabilities

Definition 6.4.1. Suppose h : S ® [0, ` ) is such that h (s) 5 0 for some

s P S. A decomposition S > w S1 3 . . . 3 Sn is called an h -decomposition

if there exist maps h i: Si ® [0, ` ) with h (s1, . . . , sn) + w 2 1 5 ( h i (si) for

all s1, . . . , sn.

For suggestive notation we assume that 0 P S with h (0) 5 0 and that
(0, . . . , 0) is the element of the product S1 3 . . . Sn corresponding to 0.

Also, we abuse notation by using h in place of h + w 2 1. A simple observation

is most useful.

Lemma 6.4.2. If S > S1 3 . . . 3 Sn is an h -decomposition, then the

maps which realize this must be given by h i (si) 5 h (0, . . . , si , . . . , 0).

Proof. Suppose the maps h i realize this decomposition being an h -

decomposition. As each h i is positive and h (0, . . . , 0) 5 0, it follows that

h i (0) 5 0. Therefore h (0, . . . , si , . . . , 0) 5 h 1(0) 1 . . . 1 h i (si) 1 . . . 1
h n(0) 5 h i (si). n
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Of course, this lemma is independent of the particular element chosen

to be 0. The following corollary will be most useful.

Corollary 6.4.3. A decomposition S > S1 3 . . . 3 Sn is an h -decomposi-
tion if and only if h (s1, . . . , sn) 5 h (s1, 0, . . . , 0) 1 . . . 1 h (0, . . . , 0, sn)

for each s1, . . . , sn.

Before describing the systems built using the notion of h -decomposi-

tions, a technical lemma will be useful.

Lemma 6.4.4. Suppose S > S1 3 . . . 3 S2n is a decomposition. If S >
(S1 3 S2) 3 . . . 3 (S2n 2 1 3 S2n) and S > (S1 3 . . . 3 S2n 2 1) 3 (S2 3 . . .

3 S2n) are h -decompositions, then so is S > S1 3 . . . 3 S2n.

Proof. Using the previous corollary, for each s1, . . . , sn we can express

h (s1, . . . , s2n) both as the sum h (s1, s2, 0, . . . , 0) 1 . . . 1 h (0, . . . , 0, s2n 2 1,

s2n) and as the sum h (s1, 0, s3, 0, . . . , s2n 2 1, 0) 1 h (0, s2, 0, s4, . . . , 0, s2n).
Combining these, it follows that h (s1, . . . , s2n) can be expressed as the sum

h (s1, 0, . . . , 0) 1 . . . 1 h (0, . . . , 0, s2n). The result then follows from the

previous corollary. n

Proposition 6.4.5. Suppose that D: E ® $(S) is an experimental system

and h : S ® [0, ` ) with h (s) 5 0 for some s P S. Then the restriction of D
to the set E 8 5 {e: De is an equivalence class of h -decompositions} is an

experimental system.

Proof. Note that if d is an equivalence class of h -decompositions, then

s d is also an equivalence class of h -decompositions. It follows that E 8 is

closed under the action of 2, hence forms a leveled set acted on by 2. Clearly
the restriction of D to E 8 is an embedding, and Axioms 1 and 2 are trivially

satisfied. An auxiliary result is useful to establish Axiom 3.

Suppose e is an n-ary experiment in E 8 and f is a binary experiment in

E 8. If e, f can be built from a common experiment g, we claim there is an

experiment h in E 8 which is built from g, and from which each of e, f can

be built. Indeed, if e, f can be built from g, then e 5 s g and f 5 f g for
some ordered partitions s , f . Set

h 5 ( s (1) ù f (1), s (1) ù f (2), . . . , s (n) ù f (2))g

Clearly h is built from g, and one calculates e 5 ({1, 2}, {3, 4}, . . . , {2n
2 1, 2n})h and f 5 ({1, 3, . . . , 2n 2 1}, {2, 4, . . . , 2n})h. That h is an

element of E 8 then follows directly from the previous lemma.
To verify Axiom 3 it is enough to assume K 5 (ki), i 5 1, . . . , n, is a

finite set of questions in E 8 with D[K ] compatible. Then as E is an experimen-

tal system, there is some g P E from which each member of K can be built.

Apply the above remarks to k1, k2 to obtain an experiment h1 in E 8 which
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is built from g and from which each of k1, k2 can be built. As each of h1, k3

can be built from g, apply the above remarks again to h1, k3 to obtain an

experiment h2 in E 8 which is built from g and from which each of h1, k3 can
be built. Then clearly each of k1, k2, k3 can be built from h2. Proceeding in

this fashion shows there is an experiment in E 8 from which each member

of K can be built, establishing Axiom 3. n

Definition 6.4.6. Let e be an experiment in E 8 with De 5 [S > S1 3
. . . 3 Sn]. Define a map Pe: S ® [0, 1]n as follows. For s P S, let the

corresponding element of the product be (s1, . . . , sn). Then the ith component

of Pe is defined by setting (Pe)i (s) to be h (0, . . . , si , . . . , 0)/ h (s1, . . . , sn)
if the denominator is nonzero, and 0 otherwise.

One must check that this definition is independent of the particular
choice of element from the equivalence class De, but this is straightforward.

The following result provides our experimental systems with probabilities.

Proposition 6.4.7. The maps D: E 8 ® $(S ) and P: E 8 ® 3(S ) form

an experimental system with probabilities. Further, a state s of this system

is null if and only if h (s) 5 0.

Proof. For each e in E 8, the decomposition De is an h -decomposition.

It follows from the above corollary that Pe is a probability map. Axiom 4

is trivial, and Axiom 5 follows easily. n

Proposition 6.4.8. Let (S, ? ) be a real, or complex, inner product space

and set h (s) 5 |s|2. Let E be the set of all vector space structure preserving
decompositions of S, and E 8 be all those members of E which are h -decompo-

sitions as well. Then E 8 is an experimental system with probabilities whose

questions 4 are isomorphic to the orthomodular poset of splitting subspaces

of S.

Proof. The results of Section 6.3 show E is an experimental system. Its

questions are easily seen to correspond to the set of all ordered pairs (A1,

A2) of subspaces of S which are disjoint and together span S. But the question

corresponding to (A1, A2) belongs to E 8 if and only if |s1|
2 1 | s2|

2 5 |s1 1
s2|

2 for all s1 P A1 and s2 P A2. This is equivalent to A1 and A2 being

orthogonal. n

A final comment. If the inner product space in the previous result is a

Hilbert space *, then the experimental system with probabilities created

corresponds exactly to that of Section 6.1.

APPENDIX A

Proofs of several technical results are presented in this appendix. For

proofs involving equivalence classes of decompositions [S > f S1 3 . . . 3
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Sn] it will be most convenient to first show that each equivalence class has

a canonical representative, then base calculations on the canonical representa-

tives of the classes involved. Before developing this theory of canonical
representatives, some notation is introduced and a few basic facts reviewed.

Definition A.1. For an equivalence relation u on S and s P S, let s/ u
denote the equivalence class of u containing s, and S/ u be the set of all

equivalence classes of u .

Definition A.2. Given equivalence relations u , f on S, define their
relational product u + f to be {(a, c): exists, b P S with (a, b) P u and (b,

c) P f }. If u + f 5 f + u , then u , f are said to permute. It is easy to see

that the relational product of two permuting equivalence relations is again

an equivalence relation.

The following result is well known and easy to verify.

Proposition A.3. The collection Eq(S ) of all equivalence relations on a

set S forms a complete lattice under set inclusion. Meets in this lattice are

given by intersection. The join of two permuting equivalence relations is

given by their relational product.

The following notion is of fundamental importance. While studied in

other papers, the choice of name comes from ref. 4.

Definition A.4. A Boolean subsystem of Eq(S ) is a Boolean sublattice of

Eq(S ) consisting of pairwise permuting elements. From the above proposition,

finite meets in a Boolean subsystem are given by intersection, and finite
joins by relational product.

Finite Boolean subsystems of Eq(S ) are closely related to direct product

decompositions of S. The exact relationship is provided by the following

lemma.

Lemma A.5. Given a sequence u 1, . . . , u n of equivalence relations on

S, define a map w : S ® S/ u 1 3 . . . 3 S/ u n by w (s) 5 (s/ u 1, . . . , s/ u n). These

are equivalent.

(1) w : S ® S/ u 1 3 . . . 3 S/ u n is an isomorphism.

(2) The members of the sequence u 1, . . . , u n which are not the largest
relation on S are distinct and comprise the coatoms of a finite Boolean

subsystem of Eq(S ).

Note that if u i is the largest relation on S, then S/ u i is a one-element set

and has no essential effect on the product.
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A proof of the above lemma is found in ref. 4, Proposition 2.3.4. This

result is the key to providing canonical representatives for equivalence classes

of decompositions.

Lemma A.6. Let S > f S1 3 . . . 3 Sn. Then there is exactly one sequence

u 1, . . . , u n of equivalence relations with [S > f S1 3 . . . 3 Sn] 5 [S > w S/

u 1 3 . . . 3 S/ u n], where w is the natural map given by w (s) 5 (s/ u 1, . . . , s/ u n).

Proof. Define u i 5 ker fi. Then the maps hi: Si ® S/ u i defined by setting
hi (x) 5 f 2 1

i (x) are isomorphisms and hi + fi 5 w i. It follows that w is an

isomorphism and that S > f S1 3 . . . 3 Sn is equivalent to S > w S/ u 1 3 . . .

3 S/ u n. If S > f S1 3 . . . 3 Sn is equivalent to S > x S/ f 1 3 . . . 3 S/ f n ,

where x (s) 5 (s/ f 1, . . . , s/ f n), then the decompositions S > w S/ u 1 3 . . . 3
S/ u n and S > x S/ f 1 3 . . . 3 S/ f n are equivalent. Let gi: S/ u i ® S/ f i be the

isomorphism with gi + w i 5 x i realizing this equivalence. Then f i 5 ker x i

5 ker gi + w i 5 ker w i 5 u i. n

Having canonical representatives of equivalence classes of decomposi-

tions, it remains to describe the action of 2 on $(S) in terms of these canonical

representatives. This is provided by the following lemma, whose proof follows

from ref. 4, Corollary 2.3.5.

Lemma A.7. For a decomposition S > S/ u 1 3 . . . 3 S/ u n and an ordered

partition s , s [S > S/ u 1 3 . . . 3 S/ u n] 5 [ S > S/ f 1 3 . . . 3 S/ f k], where

f i 5 ù { u j: j P s (i)}.

A simple example may be of benefit. If S > S/ u 1 3 . . . 3 S/ u 4 is a

decomposition and s 5 ({2}, {1,4}, {3}), then

s [S > S/ u 1 3 . . . 3 S/ u 4] 5 [S > S/ u 2 3 S/( u 1 ù u 4) 3 S/ u 3]

This method to calculate the action of 2 is used advantageously in the

technical proofs of results from Section 3. The proof of Lemma 3.2 is the

first task. For the convenience of the reader, this lemma is restated below.

Lemma 3.2. If e, f are compatible questions, then there is a unique

experiment g with four outcomes such that e 5 ({1, 2}, {3, 4})g and f 5
({1, 3}, {2, 4})g. The experiment g is called the standard refinement of the

ordered pair (e, f ).

Proof. As e, f can be conducted simultaneously, there is an n-ary experi-

ment h and ordered partitions s , f of n with e 5 s h and f 5 f h. Set

m 5 ( s (1) ù f (1), s (1) ù f (2), s (2) ù f (1), s (2) ù f (2))

As f (1), f (2) partition n, m (1) ø m (2) 5 s (1). Using this and other, similar

equations, it follows from Definition 2.3 that ({1, 2}, {3, 4}) m 5 s and

({1, 3}, {2, 4}) m 5 f . Therefore g 5 m h satisfies the above conditions.
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It remains to show that there is only one such experiment. Suppose g
and g8 satisfy the above conditions, and suppose Dg 5 [S > S/ u 1 3 . . . 3
S/ u 4] and Dg8 5 [S > S/ x 1 3 . . . 3 S/ x 4]. By Lemma A.5, the members of
u 1, . . . , u 4 which differ from the largest relation are distinct and comprise

exactly the coatoms of a finite Boolean subsystem of Eq(S ). It follows that

u 1 5 ( u 1 ù u 2) ~ ( u 1 ù u 3) and x 1 5 ( x 1 ù x 2) ~ ( x 1 ù x 3)

Here Ú represents the join in the lattice of equivalence relations. As ({1, 2},

{3, 4})g 5 ({1, 2}, {3, 4})g8 and ({1, 3}, {2, 4})g 5 ({1, 3}, {2, 4})g8, it
follows from Lemmas A.6 and A.7 that u 1 ù u 2 5 x 1 ù x 2 and u 1 ù u 3 5
x 1 ù x 3. Thus u 1 5 x 1. In a similar fashion, one shows u i 5 x i for i # 4,

hence Dg 5 Dg8, and as D is an embedding, g 5 g8. n

Definition A.8. For a set S, define Fact S to be the set of all ordered
pairs ( u , u 8) of equivalence relations on S for which S is canonically isomorphic

to the product S/ u 3 S/ u 8. Define a unary operation ’ on Fact S by setting

( u , u 8) ’ 5 ( u 8, u ) and a relation # by setting ( u , u 8) # ( f , f 8) if all equivalence

relations involved are in a Boolean subsystem of Eq(S ) and u # f . Constants

0 and 1 are defined to be the two ordered pairs consisting of the smallest

and largest equivalence relations on S.

A proof of the following result is found in ref. 3, Theorem 3.5.

Theorem A.9. (Fact S, # , ’ , 0, 1) is an orthomodular poset.

The next task is a proof of the main result of Section 3, Theorem 3.8.
This proof is somewhat involved and will be broken into several pieces based

on results from refs. 3 and 4. Throughout, the following assumption will

be understood.

Assumption. Assume 4 is the set of questions of an experimental system

based on decompositions of the set S and w is the map from 4 to Fact S
defined by setting w e 5 ( u 8, u ) if De 5 [S > S/ u 3 S/ u 8]. Note that the

order of the equivalence relations is reversed by this map.

Lemma A.10. Let K be a subset of 4. Then K is compatible if and only

if w [K ] is contained in a Boolean subalgebra of Fact S.

Proof. Note that K is compatible iff each finite subset of K is compatible,
and w [K ] is contained in a Boolean subalgebra of Fact S iff each finite subset

of w [K ] is contained in a Boolean subalgebra of Fact S. Therefore it is

enough to establish the result under the assumption that K is finite. So assume

K is a finite subset of 4.
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Recall a fact proved in ref. 4, Corollary 3.6. A finite subset ( u i , u 8i ), i 5
1, . . . , m, is contained in a Boolean subalgebra of Fact S iff { u i , u 8i : i # m}

is contained in a Boolean subsystem of Eq(S).
Suppose K is compatible. By definition, there exists an n-ary experiment

g from which each member of K is built. Suppose that Dg 5 [S > S/ a 1 3
. . . 3 S/ a n]. Then by Lemma A.5, the relations a 1, . . . , a n lie in a Boolean

subsystem of Fact S. But by Lemma A.7, each of the relations occurring in

the decomposition Dk of a member of K will also belong to this Boolean

subsystem. By the above-mentioned result, it follows that w [K ] is contained
in a Boolean subalgebra of Fact S.

Conversely, assume w [K ] is contained in a Boolean subalgebra of Fact
S. As finitely generated Boolean algebras are finite, w [K ] is in some finite

Boolean subalgebra of Fact S. Let u 1, . . . , u n be the coatoms of this Boolean

algebra. Then by Lemma A.5, S > S/ u 1 3 . . . 3 S/ u n. Let d be the equivalence

class of this decomposition. Suppose k P K and Dk 5 ( a , a 8). Setting A 5
{i: a # u i} and A8 5 {i: a 8 # u i} it follows from Lemma A.7 that Dk 5
s g for s 5 (A, A8). So by Axiom 3, K is compatible. n

Lemma A.11. For e, f compatible questions, w (e or f ) and w (e and f )

are the join and meet of w e, w f in Fact S.

Proof. Recall facts proved in ref. 4, Lemmas 3.1, 3.2. If ( f 1, f 81) and

( f 2, f 82) belong to a Boolean subalgebra of Fact S, then the join of these

elements in Fact S is given by ( f 1 + f 2, f 81 ù f 82) and the meet of these

elements is given by ( f 1 ù f 2, f 81 + f 82).
Assume that e, f are compatible questions. Let g be their standard

refinement and assume Dg 5 [S > S/ u 1 3 . . . 3 S/ u 4]. From the definition
of standard refinements it follows that w e 5 ( u 3 ù u 4, u 1 ù u 2) and w f 5
( u 2 ù u 4, u 1 ù u 3). Similarly, using the definition of the logical operation,

one obtains w (e or f ) 5 ( u 4, u 1 ù u 2 ù u 3) and w (e and f ) 5 ( u 2 ù u 3 ù
u 4, u 1). As e, f are assumed compatible, it follows from the previous lemma

that w e, w f belong to a Boolean subalgebra of Fact S. Using the above-

mentioned result for computing joins and some simple Boolean arithmetic,
it follows that the join of w e and w f is given by w (e or f ), with a similar

result for meets. n

Lemma A.12. For questions e and f, e implies f if and only if w e # w f.

Proof. By definition, e implies f means e, f are compatible and ((not e)

or f ) 5 True. Also, as Fact S is an orthomodular poset, w e # w f is equivalent
to w e, w f belonging to a Boolean subalgebra of Fact S and ( w e) ’ Ú w f 5 1.

Here Ú denotes join in Fact S.

Lemma A.10 establishes that e, f are compatible iff w e, w f lie in a

Boolean subalgebra of Fact S. To establish the result, it remains to show that
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((not e) or f ) 5 True is equivalent to ( w e) ’ 1 w f 5 1, under the assumption

that e, f are compatible. With the trivial observations that w (not e) 5 ( w e) ’

and w (True) 5 1, this follows easily by applying Lemma A.11 to w ((not e)
or f ). n

A proof of the main result from Section 3, Theorem 3.8, can now be

given. For the convenience of the reader, this theorem is restated below.

Theorem 3.8. (1) (4, implies, not, False, True) is an orthomodular poset.

(2) A set K of questions is contained in a Boolean subalgebra of 4 iff K is

compatible, which occurs iff any two questions in K are compatible. (3) The

operations in any Boolean subalgebra of 4 are given by and, or, not, False,
True. (4) If B is a finite Boolean subalgebra of 4 with n atoms, then there

exists an n-ary experiment g such that B 5 { s g: | s | 5 2}.

Proof. Recall a few facts. An orthomodular poset P is called regular if

a necessary and sufficient condition for a subset A # P to be contained in
a Boolean subalgebra of P is that each pair of elements of A is contained in

a Boolean subalgebra of P. In ref. 4, Theorem 4.9 it is shown that Fact S is

regular. A subalgebra S of an orthomodular poset P is called a compatible

subalgebra if two elements of S are in a Boolean subalgebra of S if and only

if they are in a Boolean subalgebra of P. Suppose S is a subset of a regular
orthomodular poset P which is closed under orthocomplementation. If every

x, y P S which are in a Boolean subalgebra of P have their meet in P
belonging to S, then by ref. 4, Corollary 2.1.14, S is a compatible subalgebra

of P which itself is a regular orthomodular poset.

Consider the subset w [4] of Fact S. Observing that ( w e) ’ 5 w (not e),

it follows that w [4] is closed under orthocomplementation. But if w e, w f are
contained in a Boolean subalgebra of Fact S, then by Lemma A.10, e, f are

compatible. By Lemma A.11, the meet of w e, w f in Fact S is w (e and f ),

which clearly belongs to w [4]. By the above-mentioned results, w [4] is a

compatible subalgebra of Fact S which itself is a regular orthomodular poset.

Note that w e 5 w f implies that De 5 Df, and as D is an embedding,

this implies e 5 f. Using Lemma A.12 and the observation that w (not e) 5
( w e) ’ , it follows that w is an isomorphism between the structure (4, implies,
not, False, True) and the structure ( w [4], # , ’ , 0, 1). Therefore (4, implies,
not, False, True) is also a regular orthomodular poset. This establishes (1).

As w [4] is a regular orthomodular poset which is a compatible subalgebra

of the regular orthomodular poset Fact S, it follows that a subset of w [4] is

contained in a Boolean subalgebra of w [4] if and only if it is contained in
a Boolean subalgebra of Fact S. Lemma A.10 then shows that a subset K of

4 is contained in a Boolean subalgebra of 4 if and only if K is compatible.

The remainder of the equivalence stated in (2) follows from what has already

been shown and the regularity of 4.
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If e, f are elements of a Boolean subalgebra B of 4, then by Lemma

A.11, w (e or f ) and w (e and f ) are the join and meet of w e, w f in Fact S.

As these elements belong to w [4], they must also be the join and meet of
w e, w f in w [4]. Since w [B] is a Boolean subalgebra of w [4], it follows from

Lemma 3.7 that w (e or f ) and w (e and f ) are the join and meet of w e, w f in

B. As w is an isomorphism, joins and meets in B are given by or, and. As

orthocomplementation on 4 is given by not, this must also be the orthocomple-

mentation on any subalgebra of 4, and clearly any subalgebra inherits the

bounds False, True of 4. This establishes (3).
Let B be a finite Boolean subalgebra of 4 with n atoms e1, . . . , en. By

part (2), B can be conducted simultaneously, so there is an m-ary experiment

h with B # { s h: | s | 5 2}. Let s i be such that ei 5 s i h, and let Xi # {1, . . . ,

m} be such that s i 5 (X i , X c
i ). Using the fact that operations in B are given

by and, or, not, it follows from Lemma 3.3 that (X1, . . . , Xn) is an ordered

partition of m. Setting g 5 (X1, . . . , Xn)h, one can verify B 5 { s g:| s | 5
2}. This establishes (4). n

To conclude the technical proofs of results from Section 3, it remains

only to discuss Propositions 3.9±3.11. For the proof of Proposition 3.9, one

first notes that the weaker version of Axiom 3 can be used to prove a weaker

version of Lemma A.10 applying only to sets K consisting of two binary
questions. Then the proof of Theorem 3.8 can be nearly duplicated to prove

Proposition 3.9. The only small change is in establishing the second condition

of proposition 3.9, which actually becomes slightly easier.

Only an example is required to establish Proposition 3.10. Take any set

S and let E be the collection of all equivalence classes of decompositions

[S > S1 3 . . . 3 Sn] for which at most four of the factors have more than
one element. Clearly E is a subset of $(S) which is closed under the action

of 2, hence is a leveled set acted on by 2. Define D: E ® $(S) to be the

identical embedding. Axioms 1 and 2 are trivially satisfied. To verify the

weakened version of Axiom 3, one must show that any two binary decomposi-

tions which have a common refinement in $(S) have a common refinement
in E. But the standard refinement will have only four factors, hence surely

be a member of E. To show this system does not satisfy Axiom 3, take any

decomposition d of S with at least five factors having more than one element.

Let K be the set of all binary decompositions which can be built from d.

Surely K is compatible in $(S), but one cannot build all members of K from

a single member of E.
The proof of Proposition 3.11 will conclude our work on Section 3. For

the convenience of the reader, the result is restated below.

Proposition 3.11. For an experimental system, Axiom 3 holds for any

set K of experiments, binary or otherwise.
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Proof. Note that it is sufficient to prove Axiom 3 holds for any finite

set K of experiments. Let K be a finite set of experiments with D[K ] compati-

ble. Then for K 8 5 { s k: k P K, | s | 5 2}, it follows that D[K 8] is compatible.
So by Axiom 3, K 8 is compatible. Let g be an experiment from which each

member of K 8 can be built. Suppose Dg 5 [S > S/ u 1 3 . . . 3 S/ u n], and

note that the experiment g may be assumed to be chosen so that none of the

relations u i are the largest relation on S. By Lemma 7.5, u 1, . . . , u n are

distinct and comprise exactly the coatoms of a finite Boolean subsystem

of Eq(S).
As each member of K 8 can be built from g, it follows from Lemma A.7

that any equivalence relation occurring in a decomposition of some member

of K 8 must belong to this Boolean subsystem. Suppose k P K and that Dk 5
[S > S/ f 1 3 . . . 3 S/ f m]. As the decomposition of ({i}, {i}c)k is given by

[S > S/ f i 3 S/ ù { f j: j Þ i}], it follows that each f i belongs to this Boolean

subsystem as well. Set Ai 5 { j: f i # u j}. Then s 5 (A1, . . . , Am) is an
ordered partition of n, and by Lemma A.7, it follows that Dk 5 s (Dg).

Therefore k 5 s g, showing each member of K can be built from g. n

APPENDIX B

The focus now turns to verifying the technical results from Section 6.

Lemma B.1. Let P1, P2, P ’
1 , P ’

2 be projection operators of a Hilbert
space. If the kernels of these projection operators lie in a common Boolean

subsystem of Eq(*), then these projections commute.

Proof. By symmetry, it is enough to show that P1 and P2 commute.

Suppose v is in the range of P1. Then P ’
1 v 5 0, so v u ’

1 0. As u ’
1 5

( u ’
1 ù u 2) + ( u ’

1 ù u ’
2 ), there is some vector w with v( u ’

1 ù u 2)w and

w( u ’
1 )0. It follows that w is in the ranges of both P1 and P2, and that P2v 5

P2w. So P1P2v 5 P1P2w 5 P2w 5 P2v 5 P2P1v. Similarly, if v is in the range

of P ’
1 , there is some w with v( u 1 ù u 2)w and w( u 1 ù u ’

2 )0. Then w is in the
ranges of both P ’

1 and P2, and P2v 5 P2w. Therefore P1P2v 5 P1P2w 5 0 5
P2P1v. As any vector can be expressed as a sum of vectors from the ranges

of P1 and P ’
1 , the result follows. n

The next task is to prove Proposition 6.1.3, which is restated below.

Proposition 6.1.3. The maps D: E ® $(*) and P: E ® 3(*) form an
experimental system with probabilities. Further, (P, P ’ ) V P is an isomor-

phism between the orthomodular poset 4 of questions of the system and

Proj(*).

Proof. First we show D is an embedding which satisfies Axioms 1±3.

Suppose e 5 (P1, . . . , Pn) is an experiment and * > */ u 1 3 . . . 3 */ u n
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is the canonical representative of the equivalence class De. Then the relations

u i are the kernels of the projections Pi , so D is an embedding. Clearly if e
is n-ary, then so is De, so D satisfies Axiom 1. As the range of the projection
( k

i Pi is canonically isomorphic to the product of the ranges of the summands,

it follows that D satisfies Axiom 2.

To verify Axiom 3, suppose K is a set of questions with D[K ] compatible.

By the nature of the axiom, there is no loss of generality to assume that K
is finite. Let (Pi , P ’

i ) for i 5 1, . . . , m be an enumeration of K, with u i 5
ker Pi and u ’

i 5 ker p ’
i . As K is compatible, Lemmas A.5 and A.7 show

that { u i , u ’
i : i # m} is contained in a Boolean subsystem of Eq(*). Using

the previous lemma, the projections Pi , P ’
i for i 5 1, . . . , m all commute,

hence are contained in a finite Boolean subalgebra of Proj(*). For R1, . . . ,

Rn the atoms of this Boolean algebra, it follows that (R1, . . . , Rn) is an

experiment from which each member of K can be built. This establishes

Axiom 3.
It is easy to establish Axioms 4 and 5, hence D and P form an experimen-

tal system with probabilities. For the further comment, the map (P, P ’ ) V
P is surely a bijection which preserves orthocomplementation. Suppose that

e1 5 (P1, P ’
1 ) and e2 5 (P2, P ’

2 ) are questions. By Definition 3.4, e1 implies
e2 iff there is a ternary experiment g with e1 5 ({1}, {2,3})g and e2 5
({1,2},{3})g. So if e1 implies e2, then P1 # P2. Conversely, if P1 # P2, then

(P1, P2 2 P1, P ’
2 ) is an experiment realizing e1 implies e2. Therefore this

map is an order isomorphism as well, hence an isomorphism of orthomodu-

lar posets. n

Our attention now turns to Lemmas 6.1.6 and 6.1.7, which relate self-

adjoint operators of a Hilbert space to observable quantities and scalings
of an experimental system. In this discussion, the following assumption

is understood.

Assumption. A is a self-adjoint operator with spectral measure E. B is

the Boolean subalgebra of 4 corresponding to the image of E. Z is the Stone

space of B and $ is the s -algebra generated by the clopen sets of Z. For
each nonzero vector v, n v is the probability measure on the Borel sets @ of

the reals defined in Proposition 6.1.5, and m v is the probability measure on

$ defined in Proposition 5.4. Finally, f is the extended real-valued map on

Z defined by f (F ) 5 inf{ l P R: E( 2 ` , l ] P F }.

For convenience, the distinction between elements of B, which are
ordered pairs (E(Y ), E(Y ) ’ ) of projections, and their corresponding elements

E(Y ) of the image of E will be blurred. This practice begins in the follow-

ing result.

Lemma B.2. For each Borel set Y of the reals, n v(Y ) 5 m v(E(Y )*).
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Proof. Note that m v(E(Y )*) is an abuse of notation for m v((E(Y ), E(Y ) ’ )*).

By Proposition 5.4 and Definition 6.1.2 this has value |E(Y )v|2/|v|2. As

E(Y ) is a projection, one verifies easily that |E(Y )v|2 5 (v, E(Y )v). But by
Proposition 6.1.5, n v(Y ) 5 (v, E(Y )v/|v|2. n

When working with measures and s -algebras, the union of an increasing

sequence of sets, or the intersection of a decreasing sequence of sets is

referred to as the limit of the sequence. A fundamental property of measures
is that they preserve such limits, i.e. m (lim An) 5 lim m (An). Using this fact

and the previous lemma, it is a simple matter to establish the following.

Lemma B.3. For any l , m v(lim E( 2 ` , l 1 1/n]*) 5 n v( 2 ` , l ]. Further,
m v(lim E( 2 ` , 2 n]*) 5 0 and m v(lim E(n, ` )*) 5 0.

The following is a simple consequence of the definition of f (F ). Its

proof is left to the reader as well.

Lemma B.4. For any real number l , f (F ) # l iff E( 2 ` , l 1 1/n] P F
for each natural number n. Similarly, f (F ) 5 2 ` iff E( 2 ` , 2 n] P F for

each natural number n, and f (F ) 5 ` iff E(n, ` ) P F for each natural number n.

With the aid of these preliminary results, the first of the two technical

lemmas from Section 6.1 can be established.

Lemma 6.1.6. For any state v and Borel set Y of the reals, n v(Y ) 5
m v( f 2 1Y ).

Proof. Note first that the previous two lemmas give m v( f 2 1{ 2 ` , ` }) 5
0. Therefore, for any measurable subset X of the extended reals it follows

that the measure of f 2 1X agrees with that of f 2 1(X \ { 6 ` }). This essentially
removes the difficulties arising from f being an extended real-valued map

and n v being a measure on the Borel subsets of the reals.

Consider the set G 5 {Y P @: f 2 1 Y P $ and m v( f 2 1Y ) 5 n v(Y )}.

Clearly é P G and from the above discussion, R P G as well. For a real

number l , it follows from the above lemmas that m v( f 2 1[ 2 ` , l ]) is equal

to n v( 2 ` , l ]. By the above discussion, the measure of f 2 1[ 2 ` , l ] agrees
with that of f 2 1( 2 ` , l ], so G contains the bounded chain # of subsets of

the reals consisting of é , R, and the family {( 2 ` , l ]: l P R}.

It is a simple matter to verify that G is closed under finite disjoint unions

and the difference of sets Y \X with X # Y. It follows that G contains the

Boolean algebra @0 of subsets of the reals generated by the bounded chain

#. If we can show that G is a monotone class it will follow from ref. 6,
Proposition I.4.2, that G contains the s -algebra of subsets of the reals generated

by @0, which is the whole of the Borel sets @. This will establish the result.

Suppose Yn is an increasing sequence of subsets of the reals with each

Yn P G , and set Y 5 lim Yn. Clearly Y P @ and as f 2 1 Y 5 lim f 2 1Yn it
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follows that Y P $. It remains to show m v( f 2 1Y ) 5 n v(Y ). But this follows

easily, as the measures m v and n v both preserve limits and m v( f 2 1Yn) 5 n v(Yn)

by assumption. n

The second, and final, technical result from Section 6.1 is established

through a sequence of lemmas.

Lemma B.5. For a , b, a ? n v(a,b] # * E(a,b]
* f d m v # b ? n v (a,b].

Proof. By lemma B.2. m v(E(a,b]*) 5 n v(a,b]. But if F P E(a,b]*, then

E(a,b] P F. This implies E( 2 ` ,b] P F and E( 2 ` ,a] ¸ F. It follows that a #
f (F ) # b. n

Lemma B.6. For a , b we have * (a,b] x d n v 5 * E(a,b]* f d m v.

Proof. Call a function s(x) a special lower step function on (a,b] if there

are a 5 p0 , . . . , pn 1 1 5 b with s 5 ( n
0 pi ? x (pi,pi 1 1], and call t(x) a special

upper step function on (a, b] if there are a 5 q0 , . . . , qm 1 1 5 b with
t 5 ( m

0 qi 1 1 ? x (qi,qi 1 1 ]. For such s, t we claim

# (a,b]

s d n v # # E(a,b]*
f d m v # # (a,b]

t d n v

Indeed, by Lemma B.5 and the fact that the E ( pi ,pi 1 1]* partition E(a,b]*,

we have

# (a,b]

s d n v 5 o
n

i 5 0

pi ? n v( pi , pi 1 1] # o
n

i 5 0 # E(pi,pi 1 1]*
f d m v 5 # E(a,b]*

f d m v

An obviously similar argument establishes the other inequality.
It is a simple matter to construct an increasing sequence sn of special

lower step functions on (a, b] with sn(x) ® x for each x P (a, b], and similarly

one can find a decreasing sequence tn of special upper step functions on (a,

b] with tn(x) ® x for each x P (a,b]. As s0 # sn , tn # t0, we may apply

Lebesgue’ s dominated convergence theorem to obtain

lim
n ® ` # (a,b]

sn d n v 5 # (a,b]

x d n v 5 lim
n ® ` # (a,b]

tn d n v

The result follows by the squeeze theorem. n

The final lemma from Section 6.1 can now be established.

Lemma 6.1.7. For any state v, * R x d n v 5 * Z f d m v .

Proof. Let X 5 lim E(0, n]*. Note that an ultrafilter F will belong to

E(0, ` )* \X if and only if E(n, ` ) P F for each natural number n. Therefore
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E(0, ` )* \X equals lim E(n, ` )*, hence by Lemma B.3 has measure zero. In

a similar fashion, set Y 5 lim E( 2 n, 0]*. Then an ultrafilter F belongs to

E( 2 ` , 0]* \Y if and only if E( 2 ` , 2 n] P F for each natural number n. So
E( 2 ` , 0] \Y equals lim E( 2 ` , n]*, and by Lemma A.3 has measure zero.

As f is positive on E(0, ` )* and negative on E( 2 ` , 0]*, Lebesgue’ s

monotone convergence theorem gives

# E(0,n]*
f d m v ® # X

f d m v and # E( 2 n,0]*
f d m v ® # Y

f d m v

But the function x is also positive on (0, ` ) and negative on ( 2 ` , 0],

# (0,n]

x d n v ® # (0, ` )

x d n v and # ( 2 n,0]

x d n v ® # ( 2 ` ,0]

x d n v

Using the previous lemma and the fact that X and Y differ from E(0, ` )*

and E( 2 ` ,0]* by sets of measure zero yields the result. n
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